© 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 1 ## Chiral Catalyst Optimization Using Both Solid-Phase and Liquid-Phase Methods in Asymmetric Aza Diels-Alder Reactions Shu Kobayashi,* Ken-ichi Kusakabe, and Haruro Ishitani, Graduate School of Pharmaceutical Sciences, The University of Tokyo, CREST, Japan Science and Technology Corporation (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ## **Supporting Information** General: Melting points were uncorrected. 1 H and 13 C NMR spectra were recorded on a JEOL JNM-LA300, JNM-LA400, or JNM-LA500 spectrometer in CDCl₃ unless otherwise noted. SR-MAS NMR spectra¹ were measured on a JEOL JNM-LA-400 FT-NMR system. Tetramethylsilane (TMS) served as internal standard ($\delta = 0$) for 1 H NMR, and CDCl₃ was used as internal standard ($\delta = 77.0$) for 13 C NMR. Nitromethane served as external standard ($\delta = 0$) for 15 N NMR. IR spectra were measured with JASCO FT/IR-610 spectrometers. High-performance liquid chromatography was carried out using following apparatuses; SHIMADZU LC-10AT (liquid chromatograph), SHIMADZU SPD-10A (UV detector), and SHIMADZU C-R6A Chromatopac. Column chromatoghapy was conducted on Silica gel 60 (Merck) and preparative thin-layer chromatography was carried out using Wakogel B-5F. All chemical compounds were purified based on standard procedures. **Preparation of Polymer-Supported BINOLs:** (*R*)-Ethyl-4-(2,2'-dimethoxy-1,1'-binaphth-6-yl)butanoate was prepared according to the literature.² (R)-Ethyl-4-[2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl]butanoate (3). To a suspension of NaH (60% dispersion in mineral oil, 367 mg, 11.0 mmol) in DMF (10 ml) was added (R)-ethyl-4-(2,2'-dimethoxy-1,1'-binaphth-6-yl)butanoate (1.47 g, 3.67 mmol) in DMF (5 ml) and the mixture was stirred at rt for 1 h. The mixture was then cooled to 0 °C, and MOMCl (886 mg, © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 2 11.0 mmol) was added. After stirred at rt for 1 h, water was added to quench the reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. After a usual work-up, the crude adduct was chromatographed on silica gel (hexane/AcOEt = 9/1) to afford 3 (1.71 g, 95%). ¹H NMR (CDCl₃) & 1.24 (t, 2H, *J* = 7.0 Hz), 1.97-2.03 (m, 2H), 2.33 (t, 2H, *J* = 7.5 Hz), 2.76 (t, 2H, *J* = 7.5 Hz), 3.13 (s, 3H), 3.15 (s, 3H), 4.12 (q, 2H, *J* = 7.0 Hz), 4.95 (d, 1H, *J* = 6.8 Hz), 4.98 (d, 1H, *J* = 6.8 Hz), 5.06 (d, 1H, *J* = 6.8 Hz), 5.07 (d, 1H, *J* = 6.8 Hz), 7.05-7.09 (m, 2H), 7.15 (d, 1H, *J* = 7.9 Hz), 7.23 (ddd, 1H, *J* = 1.2, 7.3, 7.9 Hz), 7.34 (ddd, 1H, *J* = 1.2, 7.3, 7.6 Hz), 7.54 (d, 1H, *J* = 8.8 Hz), 7.57 (d, 1H, *J* = 9.1 Hz), 7.64 (s, 1H), 7.86 (d, 1H, *J* = 7.6 Hz), 7.87 (d, 1H, *J* = 9.1 Hz), 7.94 (d, 1H, *J* = 9.1 Hz); ¹³C NMR (CDCl₃) & 14.2, 26.3, 33.7, 35.0, 55.77, 55.82, 60.3, 95.2, 95.3, 117.3, 117.5, 121.2, 121.4, 124.0, 125.5, 125.6, 126.3, 126.6, 127.7, 127.8, 128.8, 129.3, 129.8, 130.0, 132.6, 134.0, 137.0, 152.2, 152.6, 173.5. (*R*)-4-[2,2'-Bis(methoxymethyloxy)-1,1'-binaphth-6-yl]-1-butanol (4). To LiAlH₄ (80 mg, 2.1 mmol) in Et₂O/THF (5 ml each) was added 3 (1.65 g, 3.38 mmol) in THF (5 ml) at rt. After stirred for 45 min, H₂O (0,16 ml) and 1N NaOH (0.33 ml) were added. The mixture was filtered and the filtrate was dried (Na₂SO₄). After a usual work-up, the crude adduct was chromatographed on silica gel (hexane/AcOEt = 2/1) to afford 4 (1.51 g, quant). ¹H NMR (CDCl₃) δ 1.37 (brs, 1H), 1.59-1.65 (m, 2H), 1.71-1.78 (m, 2H), 2.75 (t, 2H, J = 7.6 Hz), 3.13 (s, 3H), 3.15 (s, 3H), 3.65 (t, 2H, J = 6.6 Hz), 4.94 (d, 1H, J = 7.0 Hz), 4.97 (d, 1H, J = 6.7 Hz), 5.05 (d, 1H, J = 7.0 Hz), 5.06 (d, 1H, J = 6.7 Hz), 7.07 (m, 2H), 7.16 (d, 1H, J = 8.5 Hz), 7.22 (ddd, 1H, J = 1.2, 6.7, 8.5 Hz), 7.33 (ddd, 1H, J = 1.2, 6.7, 8.2 Hz), 7.53 (d, 1H, J = 9.1 Hz), 7.56 (d, 1H, J = 9.1 Hz), 7.64 (s, 1H), 7.86 (d, 1H, J = 8.2 Hz), 7.87 (d, 1H, J = 8.8 Hz), 7.94 (d, 1H, J = 9.1 Hz); ¹³C NMR (CDCl₃) δ 27.3, 32.3, 35.5, 55.77, 55.81, 62.8, 95.26, 95.31, 117.4, 117.5, 121.2, 121.5, 124.0, 125.5, 125.6, 126.2, 126.3, 127.78, 127.81, 128.8, 129.3, 129.9, 130.0, 132.5, 134.0, 137.9, 152.1, 152.6. (*R*)-1-(*tert*-Butyldimethylsiloxy)-4-[2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl]-butane (5). To a mixture of 4 (1.39 g, 3.11 mmol) and imidazole (529 mg, 7.78 mmol) in DMF (4.7 ml) was added TBSCl (563 mg, 3.73 mmol) at rt. After stirred for 2 h, water was added to quench the reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. After a usual work-up, the crude adduct was chromatographed on silica gel (hexane/AcOEt = 30/1) to afford 5 (1.73 g, quant). ¹H NMR (CDCl₃) δ 0.03 (s, 6H), 0.88 (s, 9H), 1.54-1.60 (m, 2H), 1.68-1.75 (m, 2H), 2.73 (t, 2H, J = 7.8 Hz), 3.12 (s, 3H), 3.14 (s, 3H), 3.63 (t, © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 3 2H, J = 6.4 Hz), 4.94 (d, 1H, J = 6.7 Hz), 4.97 (d, 1H, J = 6.7 Hz), 5.04 (d, 1H, J = 6.7 Hz), 5.06 (d, 1H, J = 6.7 Hz), 7.07 (m, 2H), 7.16 (d, 1H, J = 8.5 Hz), 7.21 (ddd, 1H, J = 1.2, 6.7, 8.5 Hz), 7.33 (ddd, 1H, J = 1.2, 6.7, 8.2 Hz), 7.53 (d, 1H, J = 9.1 Hz), 7.56 (d, 1H, J = 9.1 Hz), 7.63 (s, 1H), 7.85 (d, 1H, J = 8.2 Hz), 7.86 (d, 1H, J = 9.1 Hz), 7.93 (d, 1H, J = 9.1 Hz); 13 C NMR (CDC1₃) 8 - 5.3, 18.3, 26.0, 27.4, 32.5, 35.5, 55.75, 55.79, 63.0, 95.3, 95.4, 117.40, 117.44, 121.3, 121.6, 124.0, 125.5, 125.6, 126.2, 126.3, 127.8, 127.9, 128.8, 129.3, 129.9, 130.1, 132.5, 134.0, 138.2, 152.1, 152.7. (*R*)-1-(*tert*-Butyldimethylsiloxy)-4-[3,3'-dibromo-2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl]butane (6). To 5 (1.5 g, 2.67 mmol) in Et₂O (45 ml) was added *n*-BuLi (1.57M, 5.1 ml, 8.0 mmol) at rt, and the mixture was stirred for 3 h. The mixture was cooled to 0 °C, and to this mixture was added BrF₂CCF₂Br (2.43 g, 9.35 mmol) in THF (15 ml). After stirred at rt for 4 h, sat. NH₄Cl aq. was added to quench the reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. After a usual work-up, the crude adduct was chromatographed on silica gel (hexane/AcOEt = 30/1) to afford 6 (1.70 g, 90%). 1 H NMR (CDCl₃) δ 0.04 (s, δ H), 0.88 (s, θ H), 1.54-1.60 (m, 2H), 1.67-1.77 (m, 2H), 2.55 (s, 3H), 2.75 (t, 2H, J = 7.7 Hz), 3.64 (t, 2H, J = 6.5 Hz), 4.79-4.83 (m, 4H), 7.09 (d, 2H, J = 8.5 Hz), 7.15 (dd, 1H, J = 1.5, 8.5 Hz), 7.20 (d, 1H, J = 8.3 Hz), 7.30 (ddd, 1H, J = 0.7, 7.1, 8.3 Hz), 7.44 (ddd, 1H, J = 0.7, 7.1, 8.1 Hz), 7.56 (brs, 1H), 7.80 (d, 1H, J = 8.1 Hz), 8.19 (s, 1H), 8.26 (s, 1H); 13 C NMR CDCl₃) δ -5.3, 18.3, 26.0, 26.2, 27.2, 32.4, 35.5, 56.2, 56.3, 62.9, 99.1, 117.2, 117.3, 125.3, 126.0, 126.4, 126.6, 126.8, 127.1, 127.5, 128.5, 131.4, 131.7, 132.4, 132.9, 133.1, 140.5, 149.4, 150.0. (*R*)-4-[3,3'-Dibromo-2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl]-1-butanol (7). To 6 (1.53 g, 2.10 mmol) in THF (12 ml) was added Bu₄NF (4.2 ml (1M solution in THF), 4.2 mmol) at 0 °C. After stirred for 4 h at rt, water was added to quench the reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. After a usual work-up, the crude adduct was chromatographed on silica gel (hexane/AcOEt = 30/1) to afford 7 (1.20 g, 95%). 1 H NMR (CDCl₃) δ 1.45 (brs, 1H), 1.58-1.65 (m, 2H), 1.72-1.79 (m, 2H), 2.55 (s, 3H), 2.59 (s, 3H), 2.76 (t, 2H, J = 7.6 Hz), 3.66 (t, 2H, J = 6.6 Hz), 4.79-4.83 (m, 4H), 7.09 (d, 1H, J = 8.5 Hz), 7.15 (dd, 1H, J = 1.5, 8.5 Hz), 7.19 (d, 1H, J = 8.3 Hz), 7.30 (ddd, 1H, J = 1.2, 7.1, 8.3 Hz), 7.43 (ddd, 1H, J = 1.0, 7.1, 8.1 Hz), 7.57 (brs, 1H), 7.80 (d, 1H, J = 8.1 Hz), 8.17 (s, 1H), 8.26 (s, 1H); 13 C NMR (CDCl₃) δ 27.2, 32.3, 35.5, 56.2, 56.3, 62.7, 99.1, 117.26, 117.29, 125.3, 126.0, 126.45, - © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 4 126.53, 126.8, 127.1, 127.5, 128.4, 131.4, 131.5, 131.7, 131.9, 132.4, 132.9, 133.0, 140.2, 149.5, 150.0. - (*R*)-4-[3,3'-Dibromo-2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl]butoxymethyl polystyrene (8).³ To a suspension of NaH (60% dispersion in mineral oil, 79.0 mg, 1.97 mmol) in DMF (10 ml) was added 7 (1.19g, 1.97 mmol) in DMF (6 ml) at rt. After stirred at the same temperature for 1.5 h, Merrifield resin (1.19 g, 1.97 mmol) and Bu₄NI (24.5 mg, 0.066 mmol) were added, and the mixture was stirred at rt for 24 h. A water/THF solution was added and after stirred for 10 min, the mixture was filtrated. The resin was washed with H₂O (20 ml x 3), THF (20 ml x 3), CH₂Cl₂ (20 ml x 3), and Et₂O (20 ml x 3). The resulting resin was dried under reduced pressure (1 mmHg) at 60 °C. The loading of 8 (0.375 mmol/g) was determined by the elementary analysis of bromine. ¹H SR-MAS NMR (CDCl₃) δ 1.41 (brs, polystyrene), 1.76 (brs, polystyrene), 2.55 (brs, 6H), 2.72 (brs, 2H), 3.45 (brs, 2H), 4.81 (brs, 4H), 6.55 (brs, polystyrene), 7.03 (brs, polystyrene), 7.36 (brs, 1H), 7.54 (brs, 1H), 7.74 (brs, 1H), 8.16 (brs, 1H), 8.24 (brs, 1H); ¹³C SR-MAS NMR (CDCl₃) δ 27.7, 29.4, 35.5, 40.8 (polystyrene), 56.2, 69.9, 72.7, 99.1, 117.3, 125.3, 125.6 (polystyrene), 126.0, 126.4, 126.5, 126.8, 127.6 (polystyrene), 127.9 (polystyrene), 128.4, 131.4, 131.6, 132.4, 132.8, 133.1, 140.2, 145.2 (polystyrene), 149.4, 150.0. - (*R*)-4-[3,3'-Diphenyl-2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl]butoxymethyl polystyrene (9).⁴ To a mixture of 8 (500.0 mg, 0.375 mmol/g) and Pd(PPh₃)₄ (43.0 mg, 0.037 mmol) in DMF (5 ml) were added phenylboronic acid (91.7 mg, 0.75 mmol) and aqueous sodium carbonate (2M; 0.46 ml). The mixture was stirred for 24 h under reflux conditions. After adding NH₄COOH aq., the mixture was filtered. The resulting resin was washed with H₂O (20 ml x 3), THF (20 ml x 3), CH₂Cl₂ (20 ml x 3), and Et₂O (20 ml x 3) to afford MOM ether 9. ¹H SR-MAS NMR (CDCl₃) δ 1.44 (brs, polystyrene), 1.82 (brs, polystyrene), 2.34 (brs, 6H), 2.76 (brs, 2H), 3.46 (brs, 2H), 4.40 (brs, 4H), 6.55 (brs, polystyrene), 7.05 (brs, polystyrene), 7.34-7.42 (m, 7H), 7.75-7.92 (m, 6H); ¹³C SR-MAS NMR (CDCl₃) δ 27.8, 29.5, 35.7, 40.3 (polystyrene), 55.8, 70.1, 72.8, 98.5, 125.1, 125.6 (polystyrene), 126.3, 126.6, 127.6 (polystyrene), 127.9 (polystyrene), 128.2, 129.6, 130.1, 130.4, 130.8, 131.0, 132.1, 133.6, 135.4, 139.2, 145.3 (polystyrene), 150.7, 151.3. - (R)-4-(3,3'-Diphenyl-2,2'-dihydroxy-1,1'-binaphth-6-yl)butoxymethyl polystyrene (10). A mixture of 9 and conc HCl/MeOH (1/25, 11 ml) was stirred at 60 °C for 6 h. After filtration, the resin was washed with H_2O (20 ml x 3), THF (20 ml x 3), CH_2Cl_2 (20 ml x 3), and Et_2O (20 ml x © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 5 3) to afford 10 (478 mg). ¹H SR-MAS NMR (CDCl₃) δ 1.44 (brs, polystyrene), 1.79 (brs, polystyrene), 2.74 (brs, 2H), 3.48 (brs, 2H), 5.34 (s, 1H), 5.38 (s, 1H), 6.57 (brs, polystyrene), 7.05 (brs, polystyrene), 7.26-7.44 (m, 4H), 7.72 (brs, 4H), 7.93 (m, 2H); ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 35.6, 40.4 (polystyrene), 70.0, 72.8, 112.3, 112.7, 124.3, 125.6 (polystyrene), 127.0, 127.7 (polystyrene), 128.0 (polystyrene), 128.4, 128.9, 129.4, 129.6, 130.6, 130.9, 131.3, 131.4, 133.0, 137.5, 138.4, 145.2 (polystyrene), 149.6, 150.1. Similarly, other polymer-supported BINOLs were prepared. - (*R*)-4-[3,3'-Bis(3-trifluoromethylphenyl)-2,2'-bis(methoxymethyloxy)-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹H SR-MAS NMR (CDCl₃) δ 1.44 (brs, polystyrene), 1.83 (brs, polystyrene), 2.40 (brs, 6H), 2.77 (brs, 2H), 4.39 (brs, 4H), 6.66 (brs, polystyrene), 7.05 (brs, polystyrene), 7.61 (m, 4H), 7.94 (m, 4H); ¹³C SR-MAS NMR (CDCl₃) δ 28.0, 29.8, 36.0, 40.7 (polystyrene), 56.3, 70.4, 73.1, 99.1, 124.3, 125.9 (polystyrene), 126.6, 127.1, 128.2 (polystyrene), 128.8, 129.0, 130.6, 131.0, 131.3, 131.6, 132.6, 133.5, 134.2, 134.4, 140.0, 140.2, 145.5 (polystyrene), 150.9, 151.5. - (*R*)-4-[3,3'-Bis(3-trifluoromethylphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹H SR-MAS NMR (CDCl₃) δ 1.42 (brs, polystyrene), 1.80 (brs, polystyrene), 2.73 (brs, 2H), 5.29 (s, 1H), 5.34 (s, 1H), 6.55 (brs, polystyrene), 7.05 (brs, polystyrene), 7.53 (m, 4H), 7.98 (4H): ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 35.5, 40.3 (polystyrene), 70.0, 72.8, 111.8, 112.1, 122.9, 124.1, 124.3, 124.7, 125.6 (polystyrene), 126.5, 127.9 (polystyrene), 128.6, 129.1, 129.5, 130.1, 130.5, 130.8, 131.1, 131.4, 131.7, 132.9, 138.3, 138.4, 138.9, 145.2 (polystyrene), 149.4, 150.0. - (*R*)-4-[3,3'-Bis(3,5-bistrifluoromethylphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.8, 29.4, 35.5, 40.4 (polystyrene), 69.9, 72.8, 111.7, 112.0, 122.1, 124.0, 124.8, 125.1, 125.6 (polystyrene), 127.9 (polystyrene), 128.5, 128.8, 129.4, 129.6, 129.9, 130.1, 131.0, 131.4, 131.7, 132.1, 133.3, 139.4, 139.6, 139.7, 145.3 (polystyrene), 149.2, 149.8. - (*R*)-4-[3,3'-Bis(4-fluorophenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 35.6, 43.8 (polystyrene), 112.0, 112.3, - © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 6 115.1, 115.4, 124.2, 124.5, 125.6 (polystyrene), 127.0, 128.0 (polystyrene), 128.4, 129.0, 129.4, 129.6, 131.0, 131.3, 132.9, 133.5, 138.6, 145.3 (polystyrene), 149.5, 150.1, 161.2, 163.7. - (*R*)-4-[3,3'-Bis(3,4-difluorophenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 35.5, 40.4 (polystyrene), 69.9, 72.8, 111.5, 111.9, 116.6, 116.7, 123.8, 124.2, 124.6, 125.6 (polystyrene), 126.6, 128.0 (polystyrene), 128.5, 129.1, 129.3, 129.6, 131.7, 132.2, 132.5, 133.3, 138.8, 145.3 (polystyrene), 147.1, 149.7, 150.4, 152.1. - (*R*)-4-[3,3'-Bis(3-tolyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. 13C SR-MAS NMR (100 MHz, CDCl₃) δ 21.5, 27.9, 29.4, 35.6, 40.3 (polystyrene), 70.0, 72.7, 112.4, 112.8, 124.1, 124.3, 125.6 (polystyrene), 126.6, 126.9, 127.9 (polystyrene), 128.3, 128.7, 129.3, 129.5, 130.2, 130.7, 131.1, 131.4, 132.9, 137.4, 138.0, 138.3, 145.2 (polystyrene), 149.4, 150.0. - (*R*)-4-[3,3'-Bis(4-tolyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. 13C SR-MAS NMR (CDCl₃) δ 21.2, 27.9, 29.4, 35.5, 40.3, 70.0, 72.7, 112.3, 112.7, 124.1, 124.3, 125.6 (polystyrene), 126.9, 127.9 (polystyrene), 128.6, 129.1, 129.4, 130.6, 131.0, 131.3, 132.8, 134.6, 137.4, 138.3, 145.2 (polystyrene), 149.6, 150.1. - (*R*)-4-[3,3'-Bis(4-tert-butylphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 31.3, 34.6, 35.6, 40.3 (polystyrene), 70.0, 72.7, 112.2, 112.6, 124.1, 124.3, 125.4, 125.6 (polystyrene), 126.9, 127.9 (polystyrene), 128.6, 129.2, 129.4, 129.6, 130.4, 130.6, 131.0, 131.3, 132.8, 134.5, 138.3, 145.2 (polystyrene), 149.6, 150.2, 150.4. - (*R*)-4-[3,3'-Bis(3,5-xylyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. 13C SR-MAS NMR (CDCl₃) δ 21.3, 27.9, 29.4, 35.6, 40.3 (polystyrene), 70.0, 72.7, 112.6, 112.9, 124.0, 124.4, 125.6 (polystyrene), 126.9, 127.0, 127.9 (polystyrene), 128.2, 128.5, 129.4, 130.4, 130.8, 131.4, 133.0, 137.3, 138.0, 138.1, 145.2, 149.4, 149.9. - (*R*)-4-[3,3'-Bis(4-biphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 35.6, 40.3, 70.0, 72.7, 112.2, 112.5, 124.3, 125.6 (polystyrene), 127.9 (polystyrene), 128.7, 129.6, 129.9, 130.8, 131.3, 132.9, 136.5, 138.4, 140.4, 140.7, 145.2 (polystyrene), 149.6, 150.2. - © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 7 - (*R*)-4-[3,3'-Bis(3-methoxyphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) 8 27.9, 29.5, 35.6, 40.4 (polystyrene), 55.3, 70.1, 72.8 112.5, 112.9, 113.5, 115.2, 121.9, 124.3, 124.4, 125.6 (polystyrene), 127.0, 128.0 (polystyrene), 128.9, 129.3, 129.5, 130.5, 130.7, 131.1, 138.4, 138.9, 145.3 (polystyrene), 149.4 150.0, 159.6. - (*R*)-4-[3,3'-Bis(4-methoxyphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.5, 35.6, 40.4 (polystyrene), 55.2, 70.1, 72.8, 112.3, 112.7, 113.9, 124.2, 124.3, 125.6 (polystyrene), 128.0 (polystyrene), 128.6, 129.5, 129.7, 129.9, 130.3, 130.4, 130.7, 131.2, 132.8, 138.3, 145.3 (polystyrene), 149.7, 150.2, 159.2. - (*R*)-4-[3,3'-Bis(3,4-dimethoxyphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl]butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) 8 27.9, 29.5, 35.6, 40.4 (polystyrene), 56.0, 70.0, 72.8, 111.3, 112.5, 113.0, 122.0, 124.4, 125.6 (polystyrene), 127.9 (polystyrene), 128.6, 129.4, 129.6, 130.3, 130.7, 131.3, 132.9, 138.4, 145.2, 148.9, 149.5, 150.1. - (*R*)-4-[3,3'-Bis(4-ethoxyphenyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 14.9, 27.9, 29.5, 35.6, 40.4 (polystyrene), 63.5, 70.0, 72.8, 112.3, 112.7, 114.5, 124.2, 124.3, 125.6 (polystyrene), 127.0, 127.9 (polystyrene), 129.5, 129.7, 130.3, 130.7, 131.2, 132.8, 138.3, 145.3 (polystyrene), 149.7, 150.2, 158.7. - (*R*)-4-(3,3'-Di-2-naphthyl-2,2'-dihydroxy-1,1'-binaphth-6-yl) butoxymethyl polystyrene. ¹³C SR-MAS NMR (100 MHz, CDCl₃) δ 27.9, 29.4, 35.6, 40.4 (polystyrene), 70.0, 72.8, 112.4, 112.8, 124.3, 125.6 (polystyrene), 126.2, 127.9 (polystyrene), 128.2, 128.5, 128.9, 129.5, 129.7, 130.6, 131.2, 131.5, 131.6, 132.7, 133.1, 133.4, 135.1, 138.4, 145.3 (polystyrene), 149.7, 150.3. - (*R*)-4-[3,3'-Bis(6-methoxy-2-naphthyl)-2,2'-dihydroxy-1,1'-binaphth-6-yl] butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.9, 29.4, 35.6, 40.3 (polystyrene), 55.2, 70.0, 72.7, 105.6, 112.4, 112.8, 119.0, 124.2, 124.3, 125.6 (polystyrene), 126.7, 126.9, 127.9 (polystyrene), 128.2, 128.7, 128.9, 129.5, 129.7, 130.6, 130.9, 131.3, 131.4, 132.8, 132.9, 133.9, 138.3, 145.2 (polystyrene), 149.7, 150.3, 157.9. - (*R*)-4-(3,3'-Di-2-thienyl-2,2'-dihydroxy-1,1'-binaphth-6-yl) butoxymethyl polystyrene. ¹³C SR-MAS NMR (CDCl₃) δ 27.8, 29.4, 35.5, 40.4 (polystyrene), 70.0, 72.8, 112.0, 112.3, 123.4, 124.1, 124.6, 125.6 (polystyrene), 126.1, 127.0, 128.0 (polystyrene), 129.1, 129.3, 129.5, 131.0, 132.5, 135.5, 138.7, 139.0, 139.1, 145.3 (polystyrene), 149.0, 149.6. **Preparation of 3,3'-Diaryl-BINOLs.**⁵ To a suspension of NaH (60 % dispersion in mineral oil; 1.15 g, 29.0 mmol) in DMF (30ml) was added (R)-(+)-1,1'-bi-2-naphthol ((R)-BINOL; 3.62 g, 12.6 mmol) in DMF (30 ml) at 0 °C. The mixture was stirred at the same temperature for 20 min, and MOMCl (2.0 ml, 12.6 mmol) was then added. The resulting mixture was gradually allowed to warm to rt over 1 h, and water was added to quench the reaction. The organic layer was separated and the aqueous layer was extracted with Et₂O. The combined organic layers were dried, and after evaporation, (R)-1,1'-bi-2-methoxymethyloxynaphthalene was obtained in a quantitative yield. To a solution of (R)-1,1'-bi-2-methoxymethyloxynaphthalene (4.71 g, 12.6 mmol) in Et₂O (200 ml) was added n-BuLi in hexane (1.5M; 25.2 ml, 37.8 mmol) at rt. After 3 h, the solution was cooled to 0 °C. A THF (50 ml) solution of 1,2-dibromo-1,1',2,2'-tetrafluoroethane (11.5 g, 44.1 mmol) was added to the above mixture, and the resulting mixture was allowed to warm to rt over 4 h. Saturated NH₄Cl aq. was then added to quench the reaction, and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried, and after evaporation, the crude product was purified by column chromatography on silica gel (hexane-AcOEt = 5/1) to afford (R)-1,1'-bi-3-bromo-2-methoxymethyl-naphthalene (6.44 g, 96% yield). To Pd(PPh₃)₄ (728 mg, 0.63 mmol) in DME (30 ml) was added (R)-1,1'-bi-3-bromo-2-methoxymethyl-naphthalene (6.44 g 12.1 mmol) in DME (40 ml) at rt. After 10 min, an arylboronic acid⁶ (36.3 mmol) in ethanol and aqueous sodium carbonate (2 M; 12.1 ml) were added successively, and the resulting mixture was heated under reflux. After 18 h, insoluble materials were removed by filtration, and DME was distilled off. Dichloromethane (100 ml) was added to the crude mixture and the dichloromethane solution was washed with water and brine. The solution was concentrated *in vacuo* to afford crude (R)-1,1'-bi-3-aryl-2-methoxymethyloxynaphthalene. To a THF solution (50ml) of crude (R)-1,1'-bi-3-aryl-2-methoxymethyloxynaphthalene was added conc. HCl (1.5 ml), and the acidic solution was warmed to 50 °C and stirred for 2 h. After a usual work-up, the crude mixuture was chromatographed on silica gel (hexane-AcOEt = 4/1) and then recrystalyzed from dichloromethane to afford 3,3'-diaryl-1,1'-bi-2-naphthol in a quantitative yield. (*R*)-3,3'-Bis(4-fluorophenyl)-2,2'-dihydroxy-1,1'-binaphthyl. [α]_D²⁸ +83.5 (c = 1.0, THF); IR (KBr) 514, 751, 832, 1127, 1164, 1230, 1359, 1402, 1443, 1512, 1594, 2926, 2954, 3055, 3506 © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 9 cm⁻¹; ¹H NMR (CDCl₃) δ 5.31 (s, 2H), 7.12-7.17 (m, 4H), 7.20 (d, 2H, J = 8.2 Hz), 7.30 (ddd, 2H, J = 1.2, 7.0, 8.2 Hz), 7.38 (ddd, 2H, J = 0.9, 7.0, 7.9 Hz), 7.67-7.71 (m, 4H), 7.90 (d, 2H, J = 7.9 Hz), 7.98 (s, 2H); ¹³C NMR (CDCl₃) δ 112.1, 115.3 (d, J_{CF} = 20.7 Hz), 124.1, 124.5, 127.5, 128.4, 129.4, 129.7, 131.3 (d, J_{CF} = 8.3 Hz), 131.5, 132.9, 133.4 (d, J_{CF} = 4.1 Hz), 150.1, 162.5 (d, J_{CF} = 247.2 Hz). (*R*)-3,3'-Bis(3-trifluoromethylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl. [α]_D²⁸ +39.4 (c = 1.0, THF); IR (KBr) 700, 751, 804, 896, 1127, 1167, 1235, 1333, 1422, 1502, 1621, 2928, 3059, 3510 cm⁻¹; ¹H NMR (CDCl₃) δ 5.35 (s, 2H), 7.22 (d, 2H, J = 7.9 Hz), 7.36 (ddd, 2H, J = 1.2, 7.0, 7.9 Hz), 7.42 (ddd, 2H, J = 1.2, 7.0, 7.9 Hz), 7.57-7.60 (m, 2H),), 7.66 (d, 2H, J = 7.9 Hz), 7.94 (t, 4H, J = 7.6 Hz), 8.03 (s, 2H), 8.06 (s, 2H); ¹³C NMR (CDCl₃) δ 111.9, 124.1, 124.2 (q, J_{CF} = 272.1 Hz), 124.4 (q, J_{CF} = 4.1 Hz), 124.8, 126.5 (q, J_{CF} = 4.1 Hz), 128.0, 128.66, 128.73, 129.3, 129.5, 130.8 (q, J_{CF} = 32.1 Hz), 132.0, 133.0, 133.1, 138.3, 150.1. (R)-3,3'-Diphenyl-1,1'-bi-2-naphthol is a literature known compound.5 **Preparation of 6,6'-Dibromo-3,3'-diphenyl-1,1'-bi-2-naphthol (3).** A solution of 3,3'-diphenyl-BINOL (11.0 mmol) in dichloromethane (60 ml) was cooled to -50 °C. Bromine (3.68 g, 23.0 mmol) in dichloromethane (5 ml) was slowly added to the solution over 30 min. After the addition was completed, the reaction mixture was allowed to warm to rt over 2.5 h, and then stirred for additional 30 min. Aqueous sodium bicarbonate (10 %) was added to quench the reaction. After a usual work-up and recrystallization from dichlorometane, (R)-6,6'-dibromo-3,3'-diphenyl-1,1'-bi-2-naphthol (3) was obtained in a 98% yield. IR (KBr): 3406, 3505 cm⁻¹. [α]_D²⁶+96.6 (c 1.0, THF). Mp: 262-264 C. ¹H NMR (CDCl₃): δ 5.40 (s, 2H), 7.05 (d, 2H, J = 8.9 Hz), 7.37 (dd, 2H, J = 2.1, 8.9 Hz), 7.43 (d, 2H, J = 7.3 Hz), 7.50 (t, 4H, J = 7.3 Hz), 7.68 (d, 4H, J = 7.3 Hz), 7.90 (s, 2H), 8.06 (d, 2H, J = 2.1 Hz); ¹³C NMR (CDCl₃): δ 112.6, 118.1, 126.0, 128.2, 128.7, 129.5, 130.3, 130.4, 130.5, 130.6, 131.5, 131.8, 136.7, 150.2. (*R*)-6,6'-Dibromo-3,3'-bis(4-fluorophenyl)-2,2'-dihydroxy-1,1'-binaphthyl. [α]_D²⁸ +79.0 (c = 1.0, THF); IR (KBr) 835, 1132, 1159, 1228, 1488, 1510, 1586, 2924, 3038, 3512 cm⁻¹; 1 H NMR (CDCl₃) δ 5.30 (s, 2H), 7.02 (d, 2H, J = 8.8 Hz), 7.15-7.20 (m, 4H), 7.38 (dd, 2H, J = 2.1, 8.8 Hz), 7.64-7.69 (m, 4H), 7.89 (s, 2H), 8.07 (d, 1H, J = 2.1 Hz); 13 C NMR (CDCl₃) δ 112.2, 115.6 (d, © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 10 $J_{CF} = 21.7 \text{ Hz}$), 118.4, 125.9, 130.4, 130.48, 130.53, 130.8, 130.9, 131.28 (d, $J_{CF} = 8.3 \text{ Hz}$), 131.34, 132.7 (d, $J_{CF} = 3.1 \text{ Hz}$), 150.3, 162.7 (d, J = 248.3 Hz). (*R*)-6,6'-Dibromo-3,3'-bis(3-trifluoromethylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl. [α]_D²⁸ +45.1 (c = 1.0, THF); IR (KBr) 701, 804, 901, 1127, 1163, 1235, 1331, 1416, 1491, 1588, 2927, 3059, 3513 cm⁻¹; ¹H NMR (CDCl₃) δ 5.34 (s, 2H), 7.04 (d, 2H, J = 9.0 Hz), 7.42 (dd, 2H, J = 2.0, 9.0 Hz), 7.59-7.63 (m, 2H), 7.68 (d, 2H, J = 7.8 Hz), 7.90 (d, 2H, J = 7.8 Hz), 7.96 (s, 2H), 7.99 (s, 2H), 8.11 (d, 2H, J = 2.0 Hz); ¹³C NMR (CDCl₃) δ 111.9, 118.7, 124.0 (q, J_{CF} = 272.9 Hz), 124.8 (q, J_{CF} = 3.3 Hz), 125.8, 126.5 (q, J_{CF} = 3.3 Hz), 129.0, 130.45, 130.53, 130.62, 130.9 (q, J_{CF} = 32.2 Hz), 131.0, 131.4, 131.5, 132.9, 137.6, 150.3. Catalytic Asymmetric Aza Diels-Alder Reactions. A typical experimental procedure is described for the reaction of an aldimine with 1-methoxy-3-trimethylsiloxy-1,3-butadiene (13, Danishefsky's diene): To a mixture of (R)-3,3'-bis(3-trifluoromethylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl (22.5 mg, 0.039 mmol), N-methylimidazole (3.2 mg, 0.039 mmol), and MS 3A (160 mg) in benzene (0.75 ml) was added a benzene (0.25 ml) solution of Zr(O^tBu)₄ (5.0 mg, 0.013 mmol), and the mixture was stirred at 80 °C for 2.5 h. To this mixture was added Me₃SiCN (2.7 mg, 0.027 mmol) in toluene (0.2 ml), and the mixture was stirred for 30 min at rt. A benzene solution (1.25 ml each) of an aldimine (0.65 mmol) and 13 (168.0 mg, 0.98 mmol) was added to this mixture over 1 h at the same temperature, and the mixture was further stirred for 1h. Saturated NaHCO₃ aq. was then added to quench the reaction. The aqueous layer was extracted with dichloromethane, and the crude adduct was treated with THF-1N HCl (20:1) at 0 °C for 30 min. After a usual work up, the crude product was chromatographed on silica gel (CHCl₃-MeOH=9/1) to give the corresponding cycloaddition adduct. The determination of enantioselectivities (HPLC analyses) and full charactalerlization of the products were performed after converting to the corresponding o-methylated compounds. The aldimine adduct was treated with 5 ml of 20 % MeI-acetone and 200 mg of K₂CO₃. After the mixture was stirred at rt for 6 h, saturated aqueous NH₄Cl was added to quench the reaction. After extraction of the aqueous layer with dichloromethane, the crude product was chromatographed on silica gel (CHCl₃-MeOH=19/1) to afford the corresponding methylated product. © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 11 For the product obtained from the imine derive from benzaldehyde and 2, the enantiomeric excess wa detremined by HPLC analysis after converting to the corresponding benzoate. Physical data of the aldimine adducts are as follows. 1-(2-Benzoyloxyphenyl)-2-phenyl-1,2,3,4-tetrahydropyridin-4-one.⁷ ¹H NMR (CDCl₃): δ 2.71 (dd, 1H, J = 5.9, 16.4 Hz), 2.98 (dd, 1H, J = 6.6, 16.4 Hz), 5.07 (dd, 1H, J = 5.9, 6.6 Hz), 5.13 (d, 1H, J = 7.8 Hz), 7.06 (d, 1H, J = 7.8 Hz), 7.13-7.30 (m, 9H), 7.53 (t, 2H, J = 7.6 Hz), 7.67 (t, 1H, J = 7.3 Hz), 8.16 (d, 2H, J = 7.6 Hz); ¹³C NMR (CDCl₃): δ 43.6, 63.5, 101.2, 123.9, 126.5, 126.87, 126.90, 127.9, 128.1, 128.2, 128.3, 128.4, 128.5, 128.7, 128.8, 130.0, 130.1, 134.2, 137.6, 138.5, 145.6, 152.1, 164.6, 190.7. HPLC: Daicel Chiralcel OD, hexane/iPrOH = 9/1, flow rate = 1.0 ml/mim: t_R = 42.3 min (S), t_R = 45.6 min (R). 1-(2-Methoxyphenyl)-5-methyl-2-phenyl-1,2,3,4-tetrahydropyridin-4-one.⁷ ¹H NMR (CDCl₃): δ 1.77 (s, 3H), 2.85 (dd, 1H, J = 8.9, 16.5 Hz), 3.03 (dd, 1H, J = 6.1, 16.5 Hz), 3.81 (s, 3H), 5.18 (dd, 1H, J = 6.1, 8.9 Hz), 6.80-6.83 (m, 2H), 6.97 (dd, 1H, J = 1.5, 7.6 Hz), 7.09-7.29 (m, 7H); ¹³C NMR (CDCl₃): δ 12.8, 44.1, 55.5, 63.1, 106.9, 111.8, 120.8, 126.8, 127.1, 127.2, 127.5, 128.3, 133.7, 139.3, 151.5, 191.0. HPLC: Daicel Chiralcel AD, hexane/ i PrOH = 19/1, flow rate = 1.0 ml/mim: tR = 19.3 min (S), tR = 20.3 min (R). 1-(2-Methoxyphenyl)-2-(2-methylphenyl)-1,2,3,4-tetrahydrpridin-4-one.⁷ ¹H NMR (CDCl₃): δ 2.24 (s, 3H), 2.75 (dd, 1H, J = 7.8 Hz), 2.96 (dd, 1H, J = 6.6, 16.3 Hz), 3.81 (s, 3H), 5.20 (d, 1H, J = 7.9 Hz), 5.52 (dd, 1H, J = 6.6, 9.2 Hz), 6.76-7.15 (m, 7H), 7.32 (d, 1H, J = 7.9 Hz), 7.41-7.44 (m, 1H); ¹³C NMR (CDCl₃): δ 18.9, 43.1, 55.2, 59.2, 99.6, 111.8, 120.8, 126.0, 126.6, 126.9, 127.4, 127.9, 130.7, 133.4, 134.6, 137.2, 153.9, 154.6, 191.1. HPLC: Daicel Chiralcel OD, hexane/PrOH = 24/1, flow rate = 1.0 ml/mim: t_R = 44.1 min (S), t_R = 50.3 min (R). 1-(2-Methoxyphenyl)-5-methyl-2-(2-methylphenyl)-1,2,3,4-tetrahydropri-din-4-one.⁷ 1 H NMR (CDCl₃): δ 1.79 (s, 3H), 2.24 (s, 3H), 2.76 (dd, 1H, J = 10.1, 16.5 Hz), 2.91 (dd, 1H, J = 6.4, 10.1 Hz), 6.77-6.79 (m, 2H), 6.94-7.09 (m, 5H), 7.35-7.38 (m, 2H); 13 C NMR (CDCl₃): δ 12.7, 18.9, 43.3, 55.4, 59.4, 106.5, 111.6, 120.6, 125.9, 126.4, 126.8, 127.2, 127.4, 130.5, 133.7, 134.5, 137.4, 152.5, 153.8, 190.9. HPLC: Daicel Chiralcel OD, hexane/ i PrOH = 9/1, flow rate = 1.0 ml/mim: t _R = 10.4 min (S), t _R = 12.7 min (R). 1-(2-Methoxyphenyl)-2-(1'naphthyl)-1,2,3,4-tetrahydropyridin-4-one.⁷ ¹H NMR (CDCl₃): δ 1.80 (s, 3H), 2.96-3.27 (m, 2H), 3.81 (s, 3H), 6.05 (t, 1H, J = 7.6 Hz), 6.78-7.00 (m, 2H), 7.25-8.02 (m, 8H); ¹³C NMR (CDCl₃): δ 12.8, 43.3, 55.5, 106.6, 111.8, 120.7, 122.5, 125.0, 125.4, 125.9, 126.0, 127.2, 128.2, 128.3, 129.1, 130.1, 133.8, 134.0, 134.1, 152.2, 153.7, 190.8. HPLC: Daicel Chiralcel OD, hexane/ i PrOH = 9/1, flow rate = 1.0 ml/mim: t R = 35.8 min (S), t R = 43.7 min (R). 1-(2-Methoxyphenyl)-5-methyl-2-(1'naphthyl)-1,2,3,4-tetrahydropyridin-4-one.⁷ ¹H NMR (CDCl₃): δ 1.80 (s,3H), 2.96-3.27 (m,2H), 3.81 (s, 3H), 6.05 (t, 1H, J = 7.6 Hz), 6.70 (t, 1H, J = 7.6 Hz),6.78-7.00 (m, 2H), 7.25-8.02 (m, 8H); ¹³C NMR (CDCl₃): δ 12.8, 43.3, 55.5, 106.6, 111.8, 120.7, 122.5, 125.0, 125.4, 125.9, 126.0, 127.2, 128.2, 128.3, 129.1, 130.1, 133.8, 134.0, 134.1, 152.2, 153.7, 190.8. HPLC: Daicel Chiralcel OD, hexane/[‡]PrOH = 9/1, flow rate = 1.0 ml/mim: ${}^{t}_{R}$ = 19.3 min (S), ${}^{t}_{R}$ = 29.7 min (R). 1-(2-Methoxyphenyl)-2-(3,4-methylenedioxyphenyl)-1,2,3,4-tetrahydrop-yridin-4-one.⁷ ¹H NMR (CDCl₃): δ 2.79 (dd, 1H, J = 8.1, 16.3 Hz), 3.03 (dd, 1H, J = 6.3, 16.3 Hz), 3.84 (s, 3H), 5.11 (dd, 1H, J = 6.3, 8.1 Hz), 5.17 (d, 1H, J = 7.8 Hz), 5.88 (s, 2H), 6.62-6.67 (m, 2H), 6.77 (s, 1H), 6.81-6.88 (m, 2H), 6.98 (d, 1H, J = 7.6 Hz), 7.15-7.18 (m, 1H), 7.23 (d, 1H, J = 7.7 Hz); ¹³C NMR (CDCl₃): δ 44.0, 55.6, 62.7, 99.7, 101.0, 107.4, 108.0, 111.9,, 120.7, 120.8, 127.0, 128.2, 133.0, 133.3, 147.1, 147.6, 153.6, 154.0, 191.1. HPLC: Daicel Chiralcel OD, hexane/ⁱPrOH = 9/1, flow rate = 1.0 ml/mim: ${}^{t}_{R}$ = 30.0 min (S), ${}^{t}_{R}$ = 31.9 min (R). 1-(2-Methoxyphenyl)-5-methyl-2-(3,4-methylenedioxyphenyl)-1,2,3,4-tetrahydropyridin-4-one.⁷ ¹H NMR (CDCl₃): δ 1.76 (s, 3H), 2.79 (dd, 1H, J = 8.9, 16.5 Hz), 2.98 (dd, 1H, J = 6.3, 16.5 Hz), 3.83 (s, 3H), 5.09 (dd, 1H, J = 6.3, 8.9 Hz), 5.87 (s, 2H), 6.62-7.27 (m, 7H), 7.13 (s, 1H); 13C NMR (CDCl₃): δ 12.7, 44.2, 55.6, 62.9. 101.0, 106.8, 107.4, 107.9, 111.8, 120.7, 120.8, 127.0, 127.6, 133.3, 133.7, 146.9, 147.5, 151.5, 154.1, 191.0. HPLC: Daicel Chiral AD, hexane/iPrOH = 9/1, flow rate = 1.0 ml/mim: t_R = 15.9 min (S), t_R = 17.6 min (R). 1-(2-Methoxyphenyl)-2-(2-thienyl)-1,2,3,4-tetrahydropyridin-4-one.⁷ ¹H NMR (CDCl₃): δ 2.72 (dd, 1H, J = 5.5, 16.2 Hz), 3.12 (dd, 1H, J = 6.5, 16.2 Hz), 3.87 (s, 3H), 5.13 (t, 1H, J = 6.2 Hz), 5.17 (d, 1H, J = 7.7 Hz), 6.87-7.02 (m, 3H), 7.15 (d, 1H, J = 7.7 Hz), 7.21-7.26 (m, 4H); ¹³C NMR (CDCl₃): δ 42.0, 54.6, 55.7, 99.8, 109.4, 111.9, 121.0, 122.9, 127.1, 128.4, 133.3, 140.3, © 2000 American Chemical Society, Org. Lett., Kobayashi ol005656b Supporting Info Page 13 143.1, 152.2, 153.9, 191.3. HPLC: Daicel Chiralcel AD, hexane/ t PrOH = 19/1, flow rate = 1.0 ml/mim: t _R = 36.9 min (S), t _R = 40.2 min (R). **2-Cyclohexyl-1-(2-methoxy-6-methylphenyl)-5-methyl-1,2,3,4-tetrahydr-opyridin-4-one.**⁷ This material was appeared as a pair of conformational isomers. 1 H NMR (CDCl₃): δ 0.93-1.75 (m, 11H), 1.69 (s, 1.5H), 1.70 (s, 1.5H), 2.32 (s, 1.5H), 2.33 (s, 1.5H), 2.53 (dd, 0.5H, J = 8.2, 16.2 Hz), 2.60 (dd, 0.5H, J = 3.4, 16.8 Hz), 2.78 (dd, 0.5H, J = 6.7, 16.2 Hz), 2.91 (dd, 0.5H, J = 8.5, 16.8 Hz), 3.47 (dt, 0.5H, J = 3.4, 8.5 Hz), 3.81-3.86 (m, 0.5+1.5H), 3.83 (s, 1.5H), 6.77-6.89 (m, 3H), 7.19 (d, 1H, J = 7.3 Hz); 13 C NMR (CDCl₃): δ 12.7, 17.8, 18.2, 26.1, 26.2, 26.3, 26.5, 26.6, 27.6, 27.9, 29.5, 30.0, 36.4, 36.8, 40.9, 55.5, 55.6, 55.7, 63.4, 64.0, 105.2, 109.0, 109.2, 122.9, 123.2, 127.9, 128.1, 136.3, 137.1, 137.2, 152.4, 153.0, 155.9, 156.0, 192.3. HPLC: Daicel Chiralcel OD, hexane/ i PrOH =24/1, flow rate = 1.0 ml/mim: t R = 11.6 min (S), t R = 13.7 min (R). ## References - 1. Kobayashi, S.; Akiyama, R.; Furuta, T.; Moriwaki, M. Molecules 1998, 2, 35. - Bayston, D. J.; Fraser, J. L.; Ashton, M. R. Baxter, A. D.; Polywka, M. E. C.; Moses, E. J. Org. Chem. 1998, 63, 3137. - 3. Nicolaou, K. C.; Vourloumis, D.; Li, T.; Pastor, J.; Winssinger, N.; He, Y.; Ninkovic, S.; Sarabia, F.; Vallberg, H.; Roschangar, F.; King, P.; Ray, M.; Finlay, V.; Giannakakou, P.; Verdier-Pinard, P.; Hamel, E. *Angew. Chem., Int. Ed. Engl.* 1997, 36, 2097. - 4. Frenette, R.; Friesen, R. W. Tetrahedron Lett. 1994, 35, 9177. - 5. Cox, P. J.; Snieckus, V. Tetrahedron Lett. 1992, 33, 2253. - 6. Morgan, J; Pinhey, J. T. J. Chem. Soc., Perkin Trans. 1 1990, 715. - 7. Kobayashi, S.; Kusakabe, K.; Komiyama, S.; Ishitani, H. J. Org. Chem. 1999, 64, 4220. - 8. Danishefsky, S. J.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807.